The peritubular reinforcement effect of porous dentine microstructure
نویسندگان
چکیده
In the current study, we evaluate the equivalent stiffness of peritubular reinforcement effect (PRE) of porous dentine optimized by the thickness of peritubular dentine (PTD). Few studies to date have evaluated or quantitated the effect of PRE on composite dentine. The miscrostructure of porous dentine is captured by scanning electron microscope images, and then finite element modeling is used to quantitate the deformation and stiffness of the porous dentine structure. By optimizing the radius of PTD and dentine tubule (DT), the proposed FE model is able to demonstrate the effect of peritubular reinforcement on porous dentine stiffness. It is concluded that the dentinal equivalent stiffness is reduced and degraded with the increase of the radius of DT (i.e., porosity) in the certain ratio value of Ep/Ei and certain radius of PTD, where Ep is the PTD modulus and Ei is the intertubular dentine modulus. So in order to ensure the whole dentinal equivalent stiffness is not loss, the porosity should get some value while the Ep/Ei is certain. Thus, PTD prevents the stress concentration around DTs and reduces the risk of DTs failure. Mechanically, the overall role of PTD appears to enhance the stiffness of the dentine composite structure. These results provide some new and significant insights into the biological evolution of the optimal design for the porous dentine microstructure. These findings on the biological microstructure design of dentine materials are applicable to other engineering structural designs aimed at increasing the overall structural strength.
منابع مشابه
Effect of Hexagonal Boron Nitrate on Microstructure and Mechanical Behavior of Al7075 Metal Matrix Composite Producing by Stir Casting Technique
Al7075 alloy reinforced with h-Boron Nitrate (BN) composites were processed by stir casting technique. The produced composite was subjected to microstructural studies using OLYMPUS -BX51M, tensile, hardness, density and wear tests. Tensile strength and hardness were found to increase by 12.8% and 20% respectively due to increased dislocation density with the addition of reinforcement. Microstru...
متن کاملEffect of Particle Volume Fraction on the Tensile Properties of Composite Al6061/SiC Materials by Hot Extrusion
In the present study the effect of phase volume fraction on the reinforcement of microstructure and tensile properties of composite extrusion process Al6061/SiC has been studied. For this purpose, the base alloy Al6061 using pure aluminum ingots, silicon, of Al-50% Mg, Al-10% Cr and a thin copper rod was prepared. Next, the composite Al6061/5% SiC, Al6061/10% SiC, Al6061/15% SiC and Al6061/20% ...
متن کاملThe effect of pulsed electrodeposition parameters on the microstructure and magnetic properties of the CoNi nanowires
CoNi nanowires were deposited by pulsed electrodeposition technique into porous alumina templates. The effect of off time between pulses (toff) and reductive/oxidative time (treduc/oxid) on the microstructure and magnetic properties of the CoNi nanowires were investigated. Maximum coercivity and squareness were obtained for samples fabricated at treduc/oxid= 0.5 ms and toff =400 ms. The coerciv...
متن کاملInfluence of Compaction Condition on the Microstructure of a Non-Plastic Glacial Till
The influence of compaction water content on the structure has been well known forclayey soils, but has never been studied for granular materials. In this paper the structure of a nonplastictill and the effect of compaction moisture is investigated by means of water retention curvestudy, scanning electron microscopy and mercury intrusion porosimetry tests. The results show thatwhen compacted on...
متن کاملEFFECTS OF REINFORCEMENT VOLUME FRACTION, REINFORCEMENT SIZE AND SOLUTION HEAT TREATMENT ON THE MICROSTRUCTURE OF THE TWO DIFFERENTLY PROCESSED A35&SICPCOMOSITES
In this study different volume fractions of SiC particles of various sizes were introduced into the semisolid A356 aluminum alloy by a mechanical stirrer. Then the slurry was poured into a permanent die of certain dimensions either when the metal alloy was partially solid (semisolid-semisolid or SS route) or after reheating to above the liquidus temperature of the alloy (semisolid-liquid or SL ...
متن کامل